import numpy as np import matplotlib.pyplot as plt import pandas as pd # The prefix of the saved output file name filename = 'simFig8.csv' # Figure name prefig = 'Fig8' figfile = 'sim%s' % prefig # Set figure dimension (width, height) in inches. fw, fh = 6, 6 fig = plt.figure(figsize=(fw,fh)) # Set subplots subpRow, subpCol = 2, 1 ax, lns = {}, {} # This gives list with the colors from the cycle, which you can use to iterate over. cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Set subplots lfontsize, labelfontsize = 12, 12 # legend, label fontsize # Read data from the files fsuffix = ['B', 'C'] x_name = 'time' y_name = ['V', 'Cai'] y_labels = ['Voltage (mV)', '[Ca]$_i$ (nM)'] T=310 for i, varName in enumerate(y_name): ax[i] = fig.add_subplot(subpRow, subpCol, i+1) data = pd.read_csv(filename) x_data = data[x_name]/1000 if i==1: y_data = (data[varName])*10**6 else: y_data = data[varName] ax[i].plot(x_data, y_data, color=cycle[0], label = 'CellML model @ T=%dK' % T) ofilename ='fig8%s.csv' % fsuffix[i] odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[i].plot(ox_data, oy_data, '.', color=cycle[0], label = 'Poh_et_al_hJSMC') plt.tick_params(direction='in', axis='both') #ax[i].legend(loc = 'best', fontsize=lfontsize, frameon=False) ax[i].set_xlabel ('Time (s)', fontsize= labelfontsize) ax[i].set_ylabel (y_labels[i], fontsize= labelfontsize) if i == 0: ax[i].set_title('%s in the paper' % (prefig)) figfiles = '%s.png' % (figfile) plt.savefig(figfiles) plt.show()