import numpy as np import matplotlib.pyplot as plt import pandas as pd # The prefix of the saved output file name filename = 'simFig3' # Figure name prefig = 'Fig3' figfile = 'sim%s' % prefig # Set figure dimension (width, height) in inches. fw, fh = 6, 6 fig = plt.figure(figsize=(fw,fh)) # Set subplots subpRow, subpCol = 1, 1 ax, lns = {}, {} # This gives list with the colors from the cycle, which you can use to iterate over. cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Set subplots lfontsize, labelfontsize = 12, 12 # legend, label fontsize # Read data from the files x_name = 'V' y_name = ['ICaT'] current= r'$I_{CaT}$' y_labels = ['Normalized Current %s' % current] Cai=[5.38843941249284e-5, 0.11] T=297 for i, varName in enumerate(y_name): ax[i] = fig.add_subplot(subpRow, subpCol, i+1) n=0 ifilename = '%s_%d.csv' % (filename,n) data = pd.read_csv(ifilename) x_data = data[x_name] y_data = data[varName] ny_data=y_data/max(abs(y_data)) Ca=Cai[n] *100000 ax[i].plot(x_data, ny_data, color=cycle[n+1], label = '@$Ca_i$=%.2f nM, T=%dK' % (Ca,T)) n=n+1 ifilename = '%s_%d.csv' % (filename,n) data = pd.read_csv(ifilename) x_data = data[x_name] y_data = data[varName] ny_data=y_data/max(abs(y_data)) ax[i].plot(x_data, ny_data, color=cycle[n+1], label = '@$Ca_i$=%.2f mM, T=%dK' % (Cai[n],T)) ofilename ='fig3.csv' odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[i].plot(ox_data, oy_data, '.', color=cycle[0], label = 'Poh_et_al_hJSMC') plt.tick_params(direction='in', axis='both') ax[i].legend(loc = 'best', fontsize=lfontsize, frameon=False) ax[i].set_xlabel ('Voltage (mV)', fontsize= labelfontsize) ax[i].set_ylabel (y_labels[i], fontsize= labelfontsize) ax[i].set_title('%s in the primary publication' % (prefig)) figfiles = '%s.png' % (figfile) plt.savefig(figfiles) plt.show()