import numpy as np import matplotlib.pyplot as plt import pandas as pd # The prefix of the saved output file name prefilename = 'simFig5' items = ['a', 'b'] # Figure name prefig = 'Fig5' figfile = 'sim%s' % prefig # Set figure dimension (width, height) in inches. fw, fh = 6, 6 fig = plt.figure(figsize=(fw,fh)) # Set subplots subpRow, subpCol = 1, 1 ax, lns = {}, {} # This gives list with the colors from the cycle, which you can use to iterate over. cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Set subplots lfontsize, labelfontsize = 12, 12 # legend, label fontsize # Read data from the files x_name = 'V' y_name = ['P_BK'] current= r'$P_{BK}$' y_labels = ['Open probability %s' % current] legends=['0.001mM','0.0003mM'] T=297 for i, varName in enumerate(y_name): ax[i] = fig.add_subplot(subpRow, subpCol, i+1) j=0 filename= '%s%s.csv' % (prefilename,items[j]) data = pd.read_csv(filename) x_data = data[x_name] y_data = data[varName] ax[i].plot(x_data, y_data, color=cycle[j], label = '@$Ca_i$=%s, T=%dK' % (legends[j],T)) ofilename ='fig5%s.csv' % (items[j]) odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[i].plot(ox_data, oy_data, '.', color=cycle[j], label = 'Poh_et_al_hJSMC @%s' % (legends[j])) j=1 filename= '%s%s.csv' % (prefilename,items[j]) data = pd.read_csv(filename) x_data = data[x_name] y_data = data[varName] ax[i].plot(x_data, y_data, color=cycle[j], label = '@$Ca_i$=%s, T=%dK' % (legends[j],T)) ofilename ='fig5%s.csv' % (items[j]) odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[i].plot(ox_data, oy_data, '.', color=cycle[j], label = 'Poh_et_al_hJSMC @%s' % (legends[j])) plt.tick_params(direction='in', axis='both') ax[i].legend(loc = 'best', fontsize=lfontsize, frameon=False) ax[i].set_xlabel ('Voltage (mV)', fontsize= labelfontsize) ax[i].set_ylabel (y_labels[i], fontsize= labelfontsize) ax[i].set_title('%s in the primary publication' % (prefig)) figfiles = '%s.png' % (figfile) plt.savefig(figfiles) plt.show()