import numpy as np import matplotlib.pyplot as plt import pandas as pd # The prefix of the saved output file name prefilenames = ['simFig5A','simFig5B'] ofilenames = ['fig5AJ_CaPump', 'fig5AJ_NaCa','fig5BJ_CaPump','fig5BJ_NaCa','fig5BJ_VOCC'] # Figure name prefig = 'Fig5' figfile = 'sim%s' % prefig # Set figure dimension (width, height) in inches. fw, fh = 6, 8 fig = plt.figure(figsize=(fw,fh)) ax, lns = {}, {} # This gives list with the colors from the cycle, which you can use to iterate over. cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Set subplots lfontsize, labelfontsize = 11, 12 # legend, label fontsize t_ss = [3, 3] duration = [0.75, 0.2] # Read data from the files x_name = 'time' y_name = ["J_CaPump", "J_NaCa", "J_VOCC"] y_labels = ['(A) J$_{Ca^{2+}}$ (nM/s)', '(B) J$_{Ca^{2+}}$ (nM/s)'] Nai=[ 16.55, 2.9836] # Set subplots subpRow, subpCol = len(prefilenames), 1 for h, plotN in enumerate(prefilenames): ax[h] = fig.add_subplot(subpRow, subpCol, h+1) if h == 0: ofilename ='../originalData/%s.csv' % ofilenames[h] odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[0], label = 'Bursztyn et al, J$_{Ca,Pump}$') ofilename ='../originalData/%s.csv' % ofilenames[h+1] odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[1], label = 'Bursztyn et al, J$_{Na/Ca}$ ') filename='../simulatedData/%s.csv' % (prefilenames[h]) data = pd.read_csv(filename) x_data = data[x_name]- t_ss[h]-duration[h] y_data = data[y_name[0]]*1000000 ax[h].plot(x_data, y_data, color=cycle[0], label = 'J$_{Ca,Pump}$)') y_data = data[y_name[1]]*1000000 ax[h].plot(x_data, y_data, color=cycle[1], label = 'J$_{Na/Ca}$)') else: ofilename ='../originalData/%s.csv' % ofilenames[h+1] odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[0], label = 'Bursztyn et al, J$_{Ca,Pump}$') ofilename ='../originalData/%s.csv' % ofilenames[h+2] odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[1], label = 'Bursztyn et al, J$_{Na/Ca}$') ofilename ='../originalData/%s.csv' % ofilenames[h+3] odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[2], label = 'BBursztyn et al, J$_{VOCC}$') filename='../simulatedData/%s.csv' % (prefilenames[h]) data = pd.read_csv(filename) x_data = data[x_name]- t_ss[h] y_data = data[y_name[0]]*1000000 ax[h].plot(x_data, y_data, color=cycle[0], label = 'J$_{Ca,Pump}$') y_data = data[y_name[1]]*1000000 ax[h].plot(x_data, y_data, color=cycle[1], label = 'J$_{Na/Ca}$') y_data = data[y_name[2]]*1000000 ax[h].plot(x_data, y_data, color=cycle[2], label = 'J$_{VOCC}$') plt.tick_params(direction='in', axis='both') ax[h].legend(loc = 'best', fontsize=lfontsize, frameon=False) ax[h].set_xlabel ('Time (s)', fontsize= labelfontsize) ax[h].set_ylabel (y_labels[h], fontsize= labelfontsize) if h == 0: ax[h].set_title('%s in the primary publication' % (prefig)) figfiles = '../%s.png' % (figfile) plt.savefig(figfiles) plt.show()