import numpy as np import matplotlib.pyplot as plt import pandas as pd # The prefix of the saved output file name prefilenames = ['simFig6'] ofilenames = ['fig6'] # Figure name prefig = 'Fig6' figfile = 'sim%s' % prefig # Set figure dimension (width, height) in inches. fw, fh = 6, 6 fig = plt.figure(figsize=(fw,fh)) ax, lns = {}, {} # This gives list with the colors from the cycle, which you can use to iterate over. cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Set subplots lfontsize, labelfontsize = 11, 12 # legend, label fontsize t_ss = [0] # Read data from the files x_name = 'time' y_name = ["Cai", "V"] y_labels = ['[Ca]$_i$ (nM)', 'Vm (mV)'] Nai=[ 16.55] # Set subplots subpRow, subpCol = len(y_name), 1 for h, plotN in enumerate(y_name): if h ==0 : ax[h] = fig.add_subplot(subpRow, subpCol, h+1) ax[h].set_title('%s in the primary publication' % (prefig)) ofilename ='../originalData/%s.csv' % ofilenames[h] odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[0], label = 'Bursztyn et al') filename='../simulatedData/%s.csv' % (prefilenames[h]) data = pd.read_csv(filename) x_data = data[x_name] y_data = data[y_name[h]]*1000000 ax[h].plot(x_data, y_data, color=cycle[0], label = 'CellML model ' ) else: ax[h] = fig.add_subplot(subpRow, subpCol, h+1) filename='../simulatedData/%s.csv' % (prefilenames[h-1]) data = pd.read_csv(filename) x_data = data[x_name] y_data = data[y_name[h]] ax[h].plot(x_data, y_data, color=cycle[0], label = 'V') plt.tick_params(direction='in', axis='both') ax[h].legend(loc = 'best', fontsize=lfontsize, frameon=False) ax[h].set_xlabel ('Time (s)', fontsize= labelfontsize) ax[h].set_ylabel (y_labels[h], fontsize= labelfontsize) figfiles = '../%s.png' % (figfile) plt.savefig(figfiles) plt.show()