import numpy as np import matplotlib.pyplot as plt import pandas as pd # The prefix of the saved output file name prefilenames = ['simFig8A','simFig8B'] ofilenames = ['fig8A', 'fig8B'] # Figure name prefig = 'Fig8' figfile = 'sim%s' % prefig # Set figure dimension (width, height) in inches. fw, fh = 7, 10 fig = plt.figure(figsize=(fw,fh)) ax, lns = {}, {} # This gives list with the colors from the cycle, which you can use to iterate over. cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Set subplots lfontsize, labelfontsize = 10, 12 # legend, label fontsize duration = [160] # Read data from the files t_ss =[0, 0, 0, 0, 0] x_name = ['time','Nai'] y_name = ["Cai", "J_NaCa", ] y_labels = ['(A) [Ca]$_i$ (nM)', '(B) $J_{Na/Ca}$ (nM/s)'] x_labels = ['Time (s)','Nai (mM)',] Nai=[2.9836, 10, 20, 30, 45] Cai=[200, 450, 700] # Set subplots subpRow, subpCol = len(prefilenames), 1 for h, plotN in enumerate(prefilenames): ax[h] = fig.add_subplot(subpRow, subpCol, h+1) if h == 0: for i in range(5): ofilename ='../originalData/%s%d.csv' % (ofilenames[h],i+1) odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[i], label = '[Na]$_i$=%.2f mM' % Nai[i]) filename='../simulatedData/%s_%d.csv' % (prefilenames[h], i) data = pd.read_csv(filename) x_data = data[x_name[h]]-t_ss[i] y_data = data[y_name[h]]*1000000 ax[h].plot(x_data, y_data, color=cycle[i], label = '[Na]$_i$=%.2f mM' % Nai[i]) ax[h].set_ylabel (y_labels[h], fontsize= labelfontsize) ax[h].set_xlabel (x_labels[h], fontsize= labelfontsize) ax[h].set_title('%s in the primary publication' % (prefig)) ax[h].legend(loc = 'upper center', bbox_to_anchor=(0.32, 1.04), ncol=2, fontsize=lfontsize, frameon=False) else: for i in range(3): ofilename ='../originalData/%s%d.csv' % (ofilenames[h],i+1) odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[h].plot(ox_data, oy_data, '.', color=cycle[i], label = 'Bursztyn et al, [Ca]$_i$ = %dmM' % Cai[i]) filename='../simulatedData/%s_%d.csv' % (prefilenames[h], i) data = pd.read_csv(filename) x_data = data[x_name[h]] y_data = data[y_name[h]]*1000000 ax[h].plot(x_data, y_data, color=cycle[i], label = '[Ca]$_i$ = %dmM' % Cai[i]) ax[h].set_ylabel (y_labels[h], fontsize= labelfontsize) ax[h].set_xlabel (x_labels[h], fontsize= labelfontsize) ax[h].legend(loc = 'best', fontsize=lfontsize, frameon=False) plt.tick_params(direction='in', axis='both') figfiles = '../%s.png' % (figfile) plt.savefig(figfiles) plt.show()