# find bond-graph parameters for a system with multiple modules # require separate folders within this directory containing each module's kinetic_parameters.py file and data files # write out cellml file in text form # prints out error between given kinetic parameters, and parameters found back-transforming the bond-graph parameters import os import sys import importlib import json import csv import math import numpy as np from scipy.linalg import null_space import sympy from sympy import Matrix, S, nsimplify from fractions import Fraction def read_IDs(path): data = [] with open(path,'r') as f: reader = csv.reader(f) for row in reader: data.append(row[0]) f.close() return data def load_matrix(stoich_path): matrix = [] with open(stoich_path,'r') as f: reader = csv.reader(f,delimiter=',') for row in reader: matrix.append([int(r) for r in row]) f.close() return matrix # def rational_nullspace(A, max_denom = 10): # v = null_space(A) # vFrac = [[Fraction(num).limit_denominator(max_denominator=max_denom) for num in row] for row in v] # vRat = [] #np.zeros([len(vFrac),len(vFrac[0])]) # if not v.any(): # return [] # for row in vFrac: # largest_denom = max([res.denominator for res in row]) # vRat.append( [vi.numerator for vi in row] ) # return vRat def calcT(I_vec,num_rows): num_cols = len(I_vec) T = np.zeros([num_rows,num_cols]) for i in range(num_cols): T[I_vec[i]][i] = 1 return T if __name__ == "__main__": # Set directories current_dir = os.getcwd() main_dir = os.path.dirname(current_dir) output_dir = current_dir + '\output' whole_name = main_dir.split('\\')[-1] if not os.path.exists(output_dir): os.mkdir(output_dir) ## Define volumes (unit pL) V_myo = 34.4 V_e = 5.182 # external volume V_SR = V_myo*0.035 # SR volume V_di = V_myo*0.0539 # diadic volume V = dict() V['V_myo'] = V_myo V['V_SR'] = V_SR V['V_di'] = V_di V['V_e'] = V_e ## Load stoichiometric matrices and kinetic rate constants subsystem_names = ['cAMP','GPCR_B1AR_reduced','GPCR_M2_reduced'] # subsystem_names = ['cAMP','GsProtein','LRGbinding_B1AR','GiProtein','LRGbinding_M2'] #['cAMP', 'LRGbinding_B1AR', 'B1AR', 'PKA', 'PLB', 'Inhib1', 'GsProtein'] num_subsystems = len(subsystem_names) sys_struct = {c:{} for c in subsystem_names} rxnIDs = [] Knames = [] Kname_modules = dict() for i_system in range(num_subsystems): sys_name = subsystem_names[i_system] sys_dir = main_dir + '\\' + sys_name +'\parameter_finder\\' os.chdir(sys_dir) forward_mat_path = 'data\\all_forward_matrix.txt' reverse_mat_path = 'data\\all_reverse_matrix.txt' N_f = load_matrix(forward_mat_path) N_r = load_matrix(reverse_mat_path) sys_struct[sys_name]['N_f'] = N_f sys_struct[sys_name]['N_r'] = N_r # print(subsystem_names[i_system]) dims = dict() dims['num_rows'] = len(N_f) dims['num_cols'] = len(N_f[0]) I = np.identity(dims['num_cols']) M = np.append(np.append(I, np.transpose(N_f),1), np.append(I, np.transpose(N_r),1),0) sys.path.append(sys_dir) globals()['kp_' + sys_name] = importlib.import_module('kinetic_parameters_' + sys_name) [k_kinetic, N_cT, K_C, W] = globals()['kp_' + sys_name].kinetic_parameters(M, True, dims, V) sys_struct[sys_name]['kfkr'] = k_kinetic # the below Kc and NcT are not used in this composite model: sys_struct[sys_name]['Kc'] = K_C sys_struct[sys_name]['N_cT'] = N_cT rxnID = read_IDs('data\\rxnID.txt') rxnIDs.extend(rxnID) sys_struct[sys_name]['rxnID'] = rxnID Kname = read_IDs('data\\Kname.txt') Knames.extend(Kname) sys_struct[sys_name]['Kname'] = Kname Kunique = [] for ik in Knames: # if ~any(strcmp(Kunique,ik)): if ik not in Kunique: Kunique.append(ik) os.chdir(current_dir) # relations between submodule to whole module for name in subsystem_names: ids = [Kunique.index(kid) for kid in sys_struct[name]['Kname']] sys_struct[name]['I_vec'] = ids num_rows = max(sys_struct[subsystem_names[-1]]['I_vec'])+1 N_f = [] N_r = [] for sys_name in subsystem_names: # print(sys_name) T = calcT(sys_struct[sys_name]['I_vec'],num_rows) sys_struct[sys_name]['T'] = T new_f = np.matmul(T,sys_struct[sys_name]['N_f']) new_r = np.matmul(T,sys_struct[sys_name]['N_r']) if not len(N_f): N_f = new_f N_r = new_r else: N_f = np.append(N_f, new_f,1) N_r = np.append(N_r, new_r,1) N_fT = np.transpose(N_f) N_rT = np.transpose(N_r) N = N_r - N_f N_T = N_rT - N_fT num_cols = len(N[0]) I = np.identity(num_cols) M = np.append(np.append(I, N_fT,1), np.append(I, N_rT,1),0) M_rref = sympy.Matrix(M).rref() ## Set up the vectors for kinetic rate constants kf = [] kr = [] for sys_name in subsystem_names: nrx = int(len(sys_struct[sys_name]['kfkr'])/2) kf.extend(sys_struct[sys_name]['kfkr'][:nrx]) kr.extend(sys_struct[sys_name]['kfkr'][nrx:]) k_kinetic = kf +kr W = list(np.append([1]*len(N[0]), [V_myo]*num_rows)) lambda_expo = np.matmul(np.linalg.pinv(M), [math.log(k) for k in k_kinetic]) lambdaW = [math.exp(l) for l in lambda_expo] lambdak = [lambdaW[i]/W[i] for i in range(len(W))] kappa = lambdak[:len(N[0])] K = lambdak[len(N[0]):] file = open(output_dir + '/all_parameters_out.json', 'w') data = { "K": K, "kappa": kappa, "k_kinetic": k_kinetic } json.dump(data, file) # Checks N_rref = sympy.Matrix(N).rref() R = nsimplify(Matrix(N), rational=True).nullspace() #rational_nullspace(N, max_denom=len(N[0])) if R: R = np.transpose(np.array(R).astype(np.float64))[0] # Check that there is a detailed balance constraint Z = nsimplify(Matrix(M), rational=True).nullspace() #rational_nullspace(M, 2) if Z: Z = np.transpose(np.array(Z).astype(np.float64))[0] k_est = np.matmul(M,[math.log(k) for k in lambdaW]) k_est = [math.exp(k) for k in k_est] diff = [(k_kinetic[i] - k_est[i])/k_kinetic[i] for i in range(len(k_kinetic))] error = np.sum([abs(d) for d in diff]) K_eq = [kf[i]/kr[i] for i in range(len(kr))] try: zero_est = np.matmul(np.transpose(R),K_eq) zero_est_log = np.matmul(np.transpose(R),[math.log(k) for k in K_eq]) except: print('undefined R nullspace') # ### print outputs ### for ik in range(len(kappa)): print('var kappa_%s: fmol_per_sec {init: %g, pub: out};' %(rxnIDs[ik],kappa[ik])) for ik in range(len(Kunique)): print('var K_%s: per_fmol {init: %g, pub: out};' %(Kunique[ik],K[ik])) print('error = ', error) # initialise struct for storing modules contributing to a given K for ik in range(len(Kunique)): Kname_modules[Kunique[ik]] = [] for sys_name in subsystem_names: modKname = sys_struct[sys_name]['Kname'] for ik in range(len(modKname)): Kname_modules[modKname[ik]].append(sys_name) # write out CellML code if True: cellmlfilepath = output_dir + '\\TEMP.cellml.txt' with open(cellmlfilepath, 'w') as cid: cid.write('def model %s as\n def import using "units_and_constants/units_BG.cellml" for\n\ unit mM using unit mM;\nunit fmol using unit fmol;\nunit per_fmol using unit per_fmol;\n\ unit J_per_mol using unit J_per_mol;\nunit fmol_per_sec using unit fmol_per_sec;\n\ unit C_per_mol using unit C_per_mol;\n unit J_per_C using unit J_per_C;\n\ unit microm3 using unit microm3;\n unit fF using unit fF;\n\ unit fC using unit fC;\n unit fA using unit fA;\n\ unit per_second using unit per_second;\n unit millivolt using unit millivolt;\n\ unit per_sec using unit per_sec;\n unit J_per_K_per_mol using unit J_per_K_per_mol;\n\ unit fmol_per_L using unit fmol_per_L;\n unit fmol_per_L_per_sec using unit fmol_per_L_per_sec;\n\ unit per_sec_per_fmol_per_L using unit per_sec_per_fmol_per_L;\n unit uM using unit uM;\n\ unit mM_per_sec using unit mM_per_sec;\n unit uM_per_sec using unit uM_per_sec;\n\ unit pL using unit pL;\n unit m_to_u using unit m_to_u;\n enddef;\n' %(whole_name)) cid.write('def import using "units_and_constants/constants_BG.cellml" for\n\ comp constants using comp constants;\nenddef;\n\n') for module in subsystem_names: cid.write('def import using "%s/BG_%s.cellml" for\ncomp %s using comp %s;\nenddef;\n' % ( module, module, module, module)) cid.write('\ndef comp BG_parameters as\n') for ik in range(len(kappa)): cid.write('var kappa_%s: fmol_per_sec {init: %g, pub: out};\n' % (rxnIDs[ik], kappa[ik])) for ik in range(len(Kunique)): cid.write('var K_%s: per_fmol {init: %g, pub: out};\n' % (Kunique[ik], K[ik])) cid.write('enddef;\n') cid.write(' def comp environment as\n\ var time: second {pub: out};\n\ var vol_myo: pL {init: 34.4, pub: out};\n\ var freq: dimensionless {init: 500};\n\ // stimulus\n\ // ramp UP and ramp DOWN\n\ var stimSt1: second {init: 3.5e-4};\n\ var stimDur1: second {init: 0.25e-4};\n\ var tRamp1: second {init: 1.8e-4};\n\ var stimMag1: fmol {init: 1e1};\n\ var stimHolding1: fmol {init: 1e-5};\n\ var m1: fmol_per_sec;\n\ m1 = stimMag1/tRamp1;\n\ q_LB1_init = sel\n\ case (time < stimSt1) and (time > stimSt1-tRamp1): \n\ stimHolding1+m1*(time-stimSt1+tRamp1);\n\ case (time >= stimSt1) and (time < stimSt1+stimDur1): \n\ stimMag1+stimHolding1;\n\ case (time < stimSt1+tRamp1+stimDur1) and (time >= stimSt1+stimDur1): \n\ stimHolding1+-m1*(time-stimSt1-tRamp1-stimDur1);\n\ otherwise: \n\ stimHolding1;\n\ endsel;\n\ var stimSt2: second {init: 7e-4};\n\ var stimDur2: second {init: 0.25e-4};\n\ var tRamp2: second {init: 1.8e-4};\n\ var stimMag2: fmol {init: 1e1};\n\ var stimHolding2: fmol {init: 1e-5};\n\ var m2: fmol_per_sec;\n\ m2 = stimMag2/tRamp2;\n\ q_LM2_init = sel\n\ case (time < stimSt2) and (time > stimSt2-tRamp2): \n\ stimHolding2+m2*(time-stimSt2+tRamp2);\n\ case (time >= stimSt2) and (time < stimSt2+stimDur2): \n\ stimMag2+stimHolding2;\n\ case (time < stimSt2+tRamp2+stimDur2) and (time >= stimSt2+stimDur2): \n\ stimHolding2+-m2*(time-stimSt2-tRamp2-stimDur2);\n\ otherwise: \n\ stimHolding2;\n\ endsel;\n') for j in range(len(K)): cid.write('var q_%s_init: fmol {init: 1e-888};\n' % Kunique[j]) cid.write('\n// mass conservation checks\n') cid.write(' var LB1_T: fmol;\n\ var RB1_T: fmol;\n\ var Gs_T: fmol;\n\ var adenosine_T: fmol;\n\ LB1_T = q_L_RB1_inactive+q_LB1+q_L_RB1_Gs+q_L_RB1+q_L_RB1_tag+q_L_RB1_GRKArr;\n\ RB1_T = q_RB1_inactive+q_L_RB1_inactive+q_RB1+q_RB1_Gs+q_L_RB1+q_L_RB1_Gs +q_RB1_tag+q_L_RB1_tag+q_RB1_GRKArr+q_L_RB1_GRKArr;\n\ Gs_T = q_Gs+q_RB1_Gs+q_L_RB1_Gs+q_Gsa_GTP+q_Gsa_GDP;\n\ adenosine_T = q_cAMP+q_PDE_cAMP+q_five_AMP+q_ATP+q_AC_ATP+q_Gsa_GTP_AC_ATP+q_FSK_AC_ATP;\n'); cid.write('\n// Global value\n') for j in range(len(K)): cid.write('var q_%s: fmol {pub: out};\n' % Kunique[j]) for module in subsystem_names: modKname = sys_struct[module]['Kname'] cid.write('\n// %s imports\n' % module) for j in modKname: cid.write('var q_%s_m%s: fmol {pub: in};\n' % (j, module)) cid.write('\n') cid.write('\n') for kun in Kunique: cid.write('q_%s = q_%s_init' % (kun, kun)) for mod in Kname_modules[kun]: cid.write(' + q_%s_m%s ' % (kun, mod)) cid.write(';\n') cid.write('enddef;\n') cid.write('\n') for module in subsystem_names: modKname = sys_struct[module]['Kname'] cid.write('def map between environment and %s for\n' % module) cid.write('vars time and time;\n') for mod in modKname: cid.write('vars q_%s_m%s and q_%s;\n' % (mod, module, mod)) cid.write('vars q_%s and q_%s_global;\n' % (mod, mod)) cid.write('enddef;\n\n') for module in subsystem_names: modKname = sys_struct[module]['Kname'] modrxnID = sys_struct[module]['rxnID'] cid.write('def map between BG_parameters and %s for\n' % (module)) for ik in modrxnID: cid.write('vars kappa_%s and kappa_%s;\n' % (ik, ik)) for mod in modKname: cid.write('vars K_%s and K_%s;\n' % (mod, mod)) cid.write('enddef;\n') cid.write('\n') for module in subsystem_names: cid.write('def map between constants and %s for\n' % (module)) cid.write('\tvars R and R;\n\tvars T and T;\nenddef;\n') cid.write('\nenddef;\n') cid.close()