# importing modules import sys as sys import os import pandas as pd import matplotlib.pyplot as plt # Getting the name of the directory where this file is present. current = os.path.dirname(os.path.realpath(__file__)) # src # Getting the parent directory name where the current directory is present. parent = os.path.dirname(current) # Simulation # Getting the grandparent directory name gparent = os.path.dirname(parent) # RecruitmentSynchronization_SMCs # The path where the plotExp.py is saved mpath = gparent + '\\cellLib\\Scripts' # appending a path sys.path.append(mpath) import plotExp # The properties of traces colors=plt.rcParams['axes.prop_cycle'].by_key()['color'] lines = ['-','--','-.',':'] markers = ['.',',','o','+','x','d'] # Figure file name and titles figfiles=parent+'\\simFig2_1.png' fig_title = 'The cytosolic calcium concentration in presence of noise \n with different standard deviation $\sigma $' plot_title =['$Ca_i^{2+}$ concentration \n when $J_{PLC_{agonist}}= 0.06 \mu M/s$ ','$Ca_i^{2+}$ concentration \n when $J_{PLC_{agonist}}= 0.06 \mu M/s$', '$Ca_i^{2+}$ concentration \n when $J_{PLC_{agonist}}= 0.08 \mu M/s$','$Ca_i^{2+}$ concentration \n when $J_{PLC_{agonist}}= 0.165 \mu M/s$'] labels = ['Original','$\sigma = 0.0015$','$\sigma = 0.002$'] # Data source dfolder_original=parent+'\\originalData\\' ofilenames=['Fig2_b_450.csv','Fig2_b.csv','Fig2_c.csv','Fig2_d.csv'] dfolder_sim=parent+'\\simulatedData\\' nfilenames=[['simFig2_b_0.0015.csv','simFig2_b_0.0015.csv','simFig2_c_0.0015.csv','simFig2_d_0.0015.csv'], ['simFig2_b_0.002.csv','simFig2_b_0.002.csv','simFig2_c_0.002.csv','simFig2_d_0.002.csv'], ] x_var_org ='x' y_var_org ='Curve1' x_var_sim = 't' y_vars_sim = ['output/c_i','output/c_i','output/c_i', 'output/c_i'] x_label='t(s)' y_label=['$c_{i}(\mu M)$','$c_{i}(\mu M)$','$c_{i}(\mu M)$','$c_{i}(\mu M)$'] # Build the traces number_trace = 3 number_plot = len(y_vars_sim) trace = [[0] * number_trace for i in range(number_plot)] for plotid, y_var_sim in enumerate(y_vars_sim): odata = pd.read_csv(dfolder_original+ofilenames[plotid]) ox_data=odata[x_var_org].values oy_data=odata[y_var_org].values trace[plotid][0]={'dataX': ox_data, 'dataY': oy_data, 'lname': labels[0], 'linestyle':lines[1], 'marker':None, 'linecolor':colors[0],'y2':False} for traceid in range(number_trace-1): dfilename_sim=dfolder_sim+nfilenames[traceid][plotid] data = pd.read_csv(dfilename_sim) x_data=data[x_var_sim].values y_data=data[y_var_sim].values trace[plotid][traceid+1]={'dataX': x_data, 'dataY': y_data, 'lname': labels[traceid+1], 'linestyle':lines[0], 'marker':None, 'linecolor':colors[traceid+1],'y2':False} # Build the plots # maxH=8.75 inches, width 2.63-7.5 rows,cols = 2,2 left = 0.125 # the left side of the subplots of the figure,0.125 right = 0.9 # the right side of the subplots of the figure,0.9 bottom = 0.1 # the bottom of the subplots of the figure, 0.1 top = 0.75 # the top of the subplots of the figure 0.9 wspace = 0.4 # the amount of width reserved for space between subplots, # expressed as a fraction of the average axis width, 0.2 hspace = 0.7 # the amount of height reserved for space between subplots, # expressed as a fraction of the average axis height, 0.2 lgdfont, labelfont =10, 10 width, height= cols*3.5, rows*3 figs ={ 'width':width, 'height': height, 'rows': rows, 'cols': cols,'left':left,'bottom':bottom,'right':right,'top':top,'wspace': wspace,'hspace': hspace,'fig_title':fig_title,'title_y':1} plots=[] for id in range(4): colid = id%2 rowid = id//2 if id == 0: lgdshow = True bbox_to_anchor = (2,1.7) else: lgdshow = False bbox_to_anchor = None iplot={'rowid':rowid, 'colid':colid, 'xlabel': x_label, 'ylabel':y_label[id], 'twiny':False, 'ylabel2':y_label[id],'labelcolor':colors[1], 'lgdshow': lgdshow, 'lgdloc':'best', 'bbox_to_anchor':bbox_to_anchor,'lgdncol': 3, 'lgdfont':lgdfont, 'labelfont': labelfont, 'setxlim': False, 'xmin':0, 'xmax': 1, 'setylim': False,'ymin':0, 'ymax':1, 'grid': True, 'gridaxis': 'both', 'plot_title': plot_title[id], 'traces':trace[id] } plots.append(iplot) ids = range(len(y_vars_sim)) subfigs={ids: plots for ids, plots in zip(ids, plots)} fig,axs=plotExp.plotExp(figs,subfigs,figfiles)