# To reproduce the data needed for clamping experiments in associated original paper, def IVFigPlot(simFign,sedversions,current,outKeys): import matplotlib.pyplot as plt import pandas as pd # Set figure dimension (width, height) in inches. fw, fh = 6, 6 fig = plt.figure(figsize=(fw,fh)) # Set subplots subpRow, subpCol = 1, 1 ax, lns = {}, {} # This gives list with the colors from the cycle, which you can use to iterate over. cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] cline = ['.','-.',':','--',] # Set subplots lfontsize, labelfontsize = 12, 12 # legend, label fontsize # Read data from the files x_name = 'V' y_name = outKeys y_labels = ['Normalized Current %s' % current] for i, varName in enumerate(y_name): ax[i] = fig.add_subplot(subpRow, subpCol, i+1) for j, sedversion in enumerate(sedversions): filename = '../simulatedData/sim%s_%s.csv' % (simFign,sedversion) data = pd.read_csv(filename) x_data = data[x_name] y_data = data[varName] ny_data=y_data/max(abs(y_data)) ax[i].plot(x_data, ny_data, cline[j], color=cycle[j+1], label = 'CellML_V%s' % sedversion) ofilename ='../originalData/%s.csv' %simFign odata = pd.read_csv(ofilename) ox_data = odata['x'] oy_data = odata['Curve1'] ax[i].plot(ox_data, oy_data, '.', color=cycle[0], label = 'Testrow_et_al_2018') plt.tick_params(direction='in', axis='both') ax[i].legend(loc = 'best', fontsize=lfontsize, frameon=False) ax[i].set_xlabel ('Voltage (mV)', fontsize= labelfontsize) ax[i].set_ylabel (y_labels[i], fontsize= labelfontsize) ax[i].set_title('%s in the primary publication' % (simFign)) figfiles = '../sim%s.png' % (simFign) plt.savefig(figfiles) plt.show()