import os import math import numpy as np import matplotlib matplotlib.use('agg') import scipy import matplotlib.pyplot as plt from scipy.integrate import solve_ivp import opencor as opencor import timeit start = timeit.default_timer() def load_sedml(filename): return opencor.open_simulation(filename) file = load_sedml("Channels.sedml") print() def sim (): # sedml file data = file.data() timespan = [0, 3e3] data.states()["main/v"] = -75.5966016388547 data.states()["main/ca_SR"] = 0.3350867967323261 data.states()["main/ca_i"] = 0.000219191642424964 data.states()["main/Na_i"] = 7.16928091250999 data.states()["main/Ki"] = 104.748824394112 data.states()["main/ca_ligand"] = 0 data.states()["main/X_ca_act"] = 0.000394925342652924 data.states()["main/X_ca_inact"] = 0.170990105585540 data.states()["main/X_fca_inact"] = 0.877798946134089 data.states()["main/X_kr_act"] = 0.309767485715433 data.states()["main/X_kr_inact"] = 0.450577185148519 data.states()["main/X_ks_act"] = 0.153788281650949 data.states()["main/X_na_h_inact"] = 0.739543607812429 data.states()["main/X_na_j_inact"] = 0.124515982574505 data.states()["main/X_na_m_act"] = 0.0297549962926414 data.states()["main/X_f_act"] = 0.00640338504912616 data.states()["main/X_to_inact"] = 0.746802810614006 data.states()["main/X_to_act"] = 0.000267597833344161 data.states()["main/X_cat_act"] = 0.000270195573471577 data.states()["main/X_cat_inact"] = 0.756032904368393 data.states()["main/C"] = 0.0113120363433751 data.states()["main/O"] = 0.000165045105312396 data.states()["main/I"] = 0.0142153622323012 data.set_starting_point(timespan[0]) data.set_ending_point(timespan[1]) data.set_point_interval(1) file.run() ds = file.results().data_store() v = ds.voi_and_variables()["main/v"].values() Time_hold = (ds.voi_and_variables()["main/t"].values()) INaCa = ds.voi_and_variables()["main/i_naca"].values() IpCa = ds.voi_and_variables()["main/i_PCa"].values() Iup = ds.voi_and_variables()["main/i_up"].values() cai = ds.voi_and_variables()["main/ca_i"].values() Cai_buf = ds.voi_and_variables()["main/Cai_buf"].values() i_leak = ds.voi_and_variables()["main/j_leak"].values() i_CaL = ds.voi_and_variables()["main/i_CaL"].values() return v, Time_hold, INaCa, IpCa, Iup, cai, Cai_buf, i_leak, i_CaL sim() time = sim()[1] INaCa = sim()[2] IpCa = sim()[3] Iup = sim()[4] cai = sim()[5] print() plt.figure(figsize=(8, 5)) plt.plot(sim()[1], sim()[0], color= 'red', linewidth= 3) plt.yticks(np.arange(-100, 51, 50)) plt.xticks(np.arange(0, 3001, 1000)) plt.xlim(0, 3000) plt.ylim(-100, 50) plt.xlabel('Time (ms)', fontsize= 18) plt.ylabel('Voltage (mV)', fontsize= 18) plt.tick_params(axis='both', labelsize='18') plt.subplots_adjust(left=0.2, bottom=0.2, right=0.9, top=0.9, wspace=0.3, hspace=0.3) stop = timeit.default_timer() print('Time: ', stop - start) plt.savefig('figures/Figure11_wholecell.png')