# pCa (PMCA) module # Return kinetic parameters, constraints, and vector of volumes in each # compartment (pL) (1 if gating variable, or in element corresponding to # kappa) import numpy as np def kinetic_parameters(M, include_type2_reactions, dims, V): # Set the kinetic rate constants num_cols = dims['num_cols'] num_rows = dims['num_rows'] # constants are stored in V F = V['F'] R = V['R'] Cm = V['Cm'] N_A = V['N_A'] # initial concentration of enzyme pCa x_pCa_channel = 3*725e1 / N_A * 1e15 # unit fmol x_pCa_channel = V['numChannels']/N_A*1e15 # unit fmol E0 = x_pCa_channel/V['V_myo'] fkc = 1e6 smr = 1e-3 Km = 0.5e-3 # [ =] mM Vmax_og = 0.2625 # 0.2625 Kernick91 # 1.15 (Clancy01) # [ =] uA / uF Vmax = Vmax_og * Cm / (F * V['V_myo']) # [=] mM/s kcat = Vmax/E0 # E0 is the initial conc of enzyme pCa. [=] 1/s kap = fkc kam = kap*Km - kcat kbp = kcat kbm = kcat*smr # (kap*kbp)/kam k_kinetic = [kap, kbp, kam, kbm] # CONSTRAINTS N_cT = [] K_C = [] # volume vector # W = list(np.append([1] * num_cols, [V['V_myo']] * num_rows)) W = [1] * num_cols + [V['V_myo'], V['V_o'],V['V_myo'],V['V_myo']] return (k_kinetic, N_cT, K_C, W)