# Ks module, translated from Kernik 19 # Return kinetic parameters, constraints, and vector of volumes in each # compartment (pL) (1 if gating variable, or in element corresponding to # kappa) # Translated from Pan 2018 cardiac AP import numpy as np def kinetic_parameters(M, include_type2_reactions, dims, V): # Set the kinetic rate constants num_cols = dims['num_cols'] num_rows = dims['num_rows'] # constants are stored in V F = V['F'] R = V['R'] T = V['T'] N_A = V['N_A'] G_GHK = 4.148559068672240e-10 # G_GHK [=] mA/mM P_ks = G_GHK/F * 1e12 # Unit pL/s . x_Ks_channel = 3000/N_A*1e15 x_Ks_channel = V['numChannels']/N_A*1e15 # unit fmol # load gate transition parameters params_xs = [0.00116560000000183, 0.000400323747581994, 0.000326899999998023, -1.41544821457997] alpha_xs = params_xs[0]*1e3 # unit s ^ -1 beta_xs = params_xs[2]*1e3 # unit s ^ -1 # Calculate bond graph constants from kinetic parameters # Note: units of kappa are fmol/s, units of K are fmol^-1 # gate particle is squared, so there are 4 reactions kf_Ks = [P_ks / x_Ks_channel, # R_GHK 2*alpha_xs, # Rx0 alpha_xs] # Rx1 kr_Ks = [P_ks / x_Ks_channel, # R_GHK beta_xs, # Rx0 2*beta_xs] # Rx1 k_kinetic = kf_Ks + kr_Ks # CONSTRAINTS N_cT = [] K_C = [] # volume vector # W = list(np.append([1] * num_cols, [V['V_myo']] * num_rows)) W = [1] * num_cols + [V['V_myo'], V['V_o']] + [1] * (num_rows-2) return (k_kinetic, N_cT, K_C, W)