# Author: Leyla Noroozbaee # Date: 12/09/2021 # Read the data (model simulations) from the selected files (csv) and plot the results for the selected variation # The data is produced through the 'ICC_Lees_Green.py' import matplotlib.pyplot as plt import pandas as pd prefilename = 'Fig4_1' filename1 = '%sa.csv' % (prefilename) data = pd.read_csv(filename1) time = data ['time'] Ca_i_Ano1 = data ['Ca_i'] Vm_Ano1 = data ['Vm'] filename2 = '%sb.csv' % (prefilename) data = pd.read_csv(filename2) time = data ['time'] Ca_i_no_Ano1 = data ['Ca_i'] Vm_no_Ano1 = data ['Vm'] fig, ax = plt.subplots(2,1, figsize=(8, 4)) # ax[0,0] = fig.add_subplot(111) ax [ 0 ].plot(time[8500:10000] , Vm_Ano1[8500:10000] , 'b', time[8500:10000] , Vm_no_Ano1[8500:10000] , 'r') ax [ 0 ].set_ylabel('Vm [mV]') ax [ 1 ].plot(time[8500:10000] , Ca_i_Ano1[8500:10000] , 'b', time[8500:10000] , Ca_i_no_Ano1[8500:10000] , 'r') ax [ 1].set_xlabel('Time (ms)') ax [ 1 ].set_ylabel('Ca [10^-6 M]') plt.show()