import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy import interpolate import math import sys # import plot_func # reload (plot_func) import os data1 = pd.read_csv('pH(6.92).csv') data2 = pd.read_csv('pH(7.24).csv') data3 = pd.read_csv('pH(7.56).csv') x1_name = "main/pO2" y1_name = "main/SHbO2" x2_name = "main/pO2" y2_name = "main/SHbO2" x3_name = "main/pO2" y3_name = "main/SHbO2" # # x2_name = "main/pCO2" # y2_name = "main/n2" # # # x3_name = "main/DPG" # y3_name = "main/n3" # # x4_name = "main/Temp" # y4_name = "main/n4" X1 = data1[x1_name] Y1 = data1[y1_name] X2 = data2[x2_name] Y2 = data2[y2_name] X3 = data3[x3_name] Y3 = data3[y3_name] # # # X4 = data4[x4_name] # Y4 = data4[y4_name] # # # Y_values = [] plt.figure(figsize=(6,6)) # plt.subplot(2,2,1) plt.plot(X1, Y1, 'navy' ,linestyle='-',marker = '', linewidth=3, label = 'pH$_{rbc}$ = 6.92') plt.plot(X2, Y2, 'green' ,linestyle='-',marker = '', linewidth=3, label = 'pH$_{rbc}$ = 7.24') plt.plot(X3, Y3, 'red' ,linestyle='-',marker = '', linewidth=3, label = 'pH$_{rbc}$ = 7.56') plt.xlim(0, 101) plt.ylim(0, 1) # plt.yticks(np.arange(0,0.8,0.15)) plt.xticks(np.arange(0, 101, 20)) plt.ylabel ('SHbO$_2$',fontsize=14) plt.xlabel ('pO$_2$, mmHg',fontsize=14) plt.grid() plt.subplots_adjust(bottom=0.5, right=0.8, top=1) plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) plt.title('Hemoglobin-Oxygen dissociation curve', fontsize=14) plt.legend(loc='upper left') plt.savefig('Figure03.png') plt.show()