# To reproduce Figure 2 in the associated Physiome paper, # execute this script from the command line: # # cd [PathToThisFile] # [PathToOpenCOR]/pythonshell Figure2.py import matplotlib matplotlib.use('agg') import numpy as np import matplotlib.pyplot as plt import opencor as opencor # load the reference model simulation = opencor.open_simulation("HumanSAN_Fabbri_Fantini_Wilders_Severi_2017.sedml") data = simulation.data() data.set_ending_point(1.6) data.set_point_interval(0.001) results = dict() simulation.reset(True) for i in range(2): simulation.run() simulation.clear_results() simulation.run() ds = simulation.results().data_store() results[0] = ds.voi_and_variables()["environment/time"].values() results[1] = ds.voi_and_variables()["Membrane/V_ode"].values() results[2] = ds.voi_and_variables()["Membrane/i_tot"].values() results[3] = ds.voi_and_variables()["Ca_SR_release/j_SRCarel"].values() results[4] = ds.voi_and_variables()["i_CaL/i_CaL"].values() results[5] = ds.voi_and_variables()["i_Kr/i_Kr"].values() results[6] = ds.voi_and_variables()["Ca_intracellular_fluxes/j_up"].values() results[7] = ds.voi_and_variables()["i_f/i_f"].values() results[8] = ds.voi_and_variables()["i_Ks/i_Ks"].values() results[9] = ds.voi_and_variables()["i_Na/i_Na"].values() results[10] = ds.voi_and_variables()["i_CaT/i_CaT"].values() results[11] = ds.voi_and_variables()["Ca_dynamics/Ca_sub"].values() results[12] = ds.voi_and_variables()["i_NaCa/i_NaCa"].values() results[13] = ds.voi_and_variables()["i_NaK/i_NaK"].values() results[14] = ds.voi_and_variables()["Ca_dynamics/Cai"].values() results[15] = ds.voi_and_variables()["i_Kur/i_Kur"].values() results[16] = ds.voi_and_variables()["i_to/i_to"].values() results[17] = ds.voi_and_variables()["Ca_dynamics/Ca_jsr"].values() results[18] = ds.voi_and_variables()["Ca_dynamics/Ca_nsr"].values() # define the x and y axis and match the units X = results[0] * 1000 Y1 = results[1] Y2 = results[2] * 1000 / 57 Y3 = results[3] Y4 = results[4] * 1000 / 57 Y5 = results[5] * 1000 / 57 Y6 = results[6] Y7 = results[7] * 1000 / 57 Y8 = results[8] * 1000 / 57 Y9 = results[9] * 1000 / 57 Y10 = results[10] * 1000 / 57 Y11 = results[11] * 1000 Y12 = results[12] * 1000 / 57 Y13 = results[13] * 1000 / 57 Y14 = results[14] * 1e6 Y15 = results[15] * 1000 / 57 Y16 = results[16] * 1000 / 57 Y17 = results[17] Y18 = results[18] plt.figure(figsize=(18, 18)) plt.subplot(6, 2, 1) plt.plot(X, Y1, 'navy', linestyle='-', label='', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.ylim(-70, 30) plt.yticks(np.arange(-60, 30, 20)) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.ylabel('V$_m$ (mV)', fontsize=22) plt.title('A', loc='left', y=1.05, x=-0.06, fontsize=22) plt.subplot(6, 2, 2) plt.plot(X, Y1, 'navy', linestyle='-', label='', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.ylim(-70, 30) plt.yticks(np.arange(-60, 30, 20)) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.ylabel('V$_m$ (mV)', fontsize=22) plt.subplot(6, 2, 3) plt.plot(X, Y2, 'navy', linestyle='-', label='', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.ylim(-8, 3) plt.yticks(np.arange(-8, 4, 2)) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.ylabel('I$_{tot}$ (pA/pF)', fontsize=22) plt.title('B', loc='left', y=1.05, x=-0.06, fontsize=22) plt.subplot(6, 2, 4) plt.plot(X, Y3, 'navy', linestyle='-', label='', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.yticks(np.arange(0, 310, 100)) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.ylabel('J$_{rel}$ (mM/s)', fontsize=22) plt.title('G', loc='left', y=1.05, x=-0.06, fontsize=22) plt.subplot(6, 2, 5) plt.plot(X, Y4, 'navy', linestyle='-', label='I$_{CaL}$', linewidth=3) plt.plot(X, Y5, 'red', linestyle='-', label='I$_{Kr}$', linewidth=3) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.ylim(-8, 3) plt.yticks(np.arange(-8, 3, 2)) plt.ylabel('(pA/pF)', fontsize=22) plt.title('C', loc='left', y=1.05, x=-0.06, fontsize=22) plt.legend(fontsize= 20) plt.subplot(6, 2, 6) plt.plot(X, Y6, 'navy', linestyle='-', label='I$_{CaL}$', linewidth=3) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.yticks(np.arange(0, 1, 0.2)) plt.ylabel('J$_{up}$ (mM/s)', fontsize=22) plt.title('H', loc='left', y=1.05, x=-0.06, fontsize=22) plt.subplot(6, 2, 7) plt.plot(X, Y7, 'navy', linestyle='-', label='I$_{f}$', linewidth=3) plt.plot(X, Y8, 'red', linestyle='-', label='I$_{Ks}$', linewidth=3) plt.plot(X, Y9, 'green', linestyle='-', label='I$_{Na}$', linewidth=3) plt.plot(X, Y10, 'purple', linestyle='-', label='I$_{CaT}$', linewidth=3) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.ylim(-0.1, 0.051) plt.yticks(np.arange(-0.1, 0.051, 0.05)) plt.ylabel('(pA/pF)', fontsize=22) plt.title('D', loc='left', y=1.05, x=-0.06, fontsize=22) plt.legend(bbox_to_anchor=(0.1, 0.2, 0.8, 0.05), loc='best', fontsize=20, ncol=5, mode="expand", borderaxespad=0.) plt.subplot(6, 2, 8) plt.plot(X, Y11, 'navy', linestyle='-', label='I$_{CaL}$', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.yticks(np.arange(0, 3.1, 1)) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.ylabel('Ca$_{sub}$ (\u03BCM)', fontsize=22) plt.title('I', loc='left', y=1.05, x=-0.06, fontsize=22) plt.subplot(6, 2, 9) plt.plot(X, Y12, 'navy', linestyle='-', label='I$_{NaCa}$', linewidth=3) plt.plot(X, Y13, 'red', linestyle='-', label='I$_{NaK}$', linewidth=3) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.xlim(0, 1600, 1000) plt.xticks(np.arange(0, 1700, 500)) plt.yticks(np.arange(-2, 1, 0.5)) plt.ylabel('(pA/pF)', fontsize=22) plt.title('E', loc='left', y=1.05, x=-0.06, fontsize=22) plt.legend(fontsize= 20) plt.subplot(6, 2, 10) plt.plot(X, Y14, 'navy', linestyle='-', label='I$_{CaL}$', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.yticks(np.arange(50, 250, 50)) plt.ylabel('Ca$_i$ (nM)', fontsize=22) plt.title('J', loc='left', y=1.07, x=-0.06, fontsize=22) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.subplots_adjust(bottom=0.5, right=0.8, top=1) plt.subplot(6, 2, 11) plt.plot(X, Y15, 'navy', linestyle='-', label='$I_{Kur}$', linewidth=3) plt.plot(X, Y16, 'red', linestyle='-', label='$I_{to}$', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.yticks(np.arange(0, 0.5, 0.1)) plt.ylabel('(pA/pF)', fontsize=22) plt.xlabel('Time (ms)', fontsize=22) plt.title('F', loc='left', y=1.05, x=-0.06, fontsize=22) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.subplots_adjust(bottom=0.5, right=0.8, top=1) plt.legend(fontsize= 20) plt.subplot(6, 2, 12) plt.plot(X, Y17, 'navy', linestyle='-', label='$Ca_{jSR}$', linewidth=3) plt.plot(X, Y18, 'red', linestyle='-', label='$Ca_{nSR}$', linewidth=3) plt.xlim(0, 1600) plt.xticks(np.arange(0, 1600, 500)) plt.yticks(np.arange(0.1, 0.6, 0.1)) plt.ylabel('(mM)', fontsize=22) plt.xlabel('Time (ms)', fontsize=22) plt.title('K', loc='left', y=1.05, x=-0.06, fontsize=22) plt.tick_params(axis='x', labelsize=22) plt.tick_params(axis='y', labelsize=22) plt.subplots_adjust(bottom=0.5, right=0.8, top=1) plt.legend(bbox_to_anchor=(0.23, 0.40, 0.5, 0.02), loc='best', fontsize=20, ncol=2, mode="expand", borderaxespad=0.) plt.tight_layout(pad=0.5, w_pad=4, h_pad=4) plt.savefig("Figure2.png")